Energy efficiency indices for large building stocks

Setting Energy Efficiency Benchmarks and Targets The Contribution of Universities

Dr. Dario Cottafava

2nd UNISET Energy Clustering Event 26/09/2016

Where we started? Before 2014 A mountain of energy bills

Where we started?

Before 2014

Few excel tables

APRILE - EDISON					MAGGIO - EDISON				
F1	F2	F3	TOTALE	KwH/G	F1	F2	F3	TOTALE	KwH/G
7166,00	1688,00	3294,00	12148,00	404,93	6833,00	1744,00	3189,00	11766,00	379,55
5353,00	1033,00	1315,00	7701,00	256,70	5119,00	951,00	1313,00	7383,00	238,16
5985,00	3774,00	4492,00	14251,00	475,03	6036,00	3916,00	4375,00	14327,00	462,16
20955,00	10801,00	12919,00	44675,00	1489,17	20965,00	11574,00	11402,00	43941,00	1417,45
1157,00	322,00	585,00	2064,00	68,80	1236,00	343,00	625,00	2204,00	71,10
15308,00	8465,00	11894,00	35667,00	1188,90	15769,00	8944,00	10783,00	35496,00	1145,03
1272,00	370,00	698,00	2340,00	78,00	1360,00	396,00	746,00	2502,00	80,71
3913,00	3895,00	3935,00	11743,00	391,43	3943,00	4198,00	3991,00	12132,00	391,35
255,00	190,00	389,00	834,00	27,80	259,00	207,00	367,00	833,00	26,87
753,00	750,00	758,00	2261,00	75,37	759,00	808,00	768,00	2335,00	75,32
1396,00	1212,00	1254,00	3862,00	128,73	1420,00	1306,00	1276,00	4002,00	129,10
21517,00	9032,00	17271,00	47820,00	1594,00	21575,00	9414,00	15655,00	46644,00	1504,65
16091,00	6631,00	11324,00	34046,00	1134,87	16572,00	6970,00	9968,00	33510,00	1080,97
8501,00	3170,00	3487,00	15158,00	505,27	7056,00	2858,00	2813,00	12727,00	410,55
13851,00	4783,00	8762,00	28610,00	953,67	14169,00	5240,00	8648,00	28057,00	905,06
79765,00	50090,00	99931,00	229786,00	7659,53	81803,00	54234,00	93383,00	229420,00	7400,65
72633,00	32360,00	62013,00	167006,00	5566,87	74959,00	35450,00	59786,00	170195,00	5490,16
1475,00	356,00	610,00	2441,00	81,37	1506,00	339,00	535,00	2380,00	76,77
1475,00	356,00	610,00	2441,00	81,37	1506,00	339,00	535,00	2380,00	76,77

Where we started?

Before 2014

lots of money to go without control

Electricity: over 32.76 GWh (7.000.000€) Gas: over 2082 TOE (2.000.000 €) per year

Re@Unito: the Energy Group

2014

The Energy Group aims to monitor Unito's energy consumption, to foster energy efficiency, to reduce energy leakage and to increase renewable energy production.

Re@Unito: the Energy Group

2014

The Energy Group aims to monitor Unito's energy consumption, to foster energy efficiency, to reduce energy leakage and to increase renewable energy production.

Let's start with the first energy audits and analyses

	M	ARZO - EDIS	ON		1		
F1	F2	F3	TOTALE	KwH/G			
8408,00	2204,00	3317,00	13929,00	449,32			
5532,00	1068,00	1359,00	7959,00	256,74			
4899,00	2350,00	2898,00	7669,00	247,39			
24722,00	14053,00	13616,00	52391,00	1690,03			
1316,00	397,00	680,00	2393,00	77,19			
17617,00	9454,00	11384,00	38455,00	1240,48			
1450,00	425,00	745,00	2620.00	04.50			
1566,00	1576,00	1555,00		A	PRILE - EDISC	DN	
259,00	207,00	367,00	F1	F2	F3	TOTALE	KwH/G
327,00	329,00	324,00	7166,00	1688,00	3294,00	12148,00	404,93
780,00	560,00	578,00	5353,00	1033,00	1315,00	7701,00	256,70
24233,00	10797,00	17563,00	5985,00	3774,00	4492,00	14251,00	475,03
19517,00	8159,00	11271,00	20955,00	10801,00	12919,00	44675,00	1489,17
11394,00	4656,00	4728,00	1157,00	322,00	585,00	2064,00	68,80
15352,00	5491,00	8980,00	15308,00	8465,00	11894,00	35667,00	1188,90
86984,00	57495,00	98963,00	1272,00	370,00	698,00	2340,00	78,00
79645,00	36221,00	60250,00	3913,00	3895,00	3935,00	11743,00	391,43
1620,00	421,00	614,00	255,00	190,00	389,00	834,00	27,80
			753,00	750,00	758,00	2261,00	75,37

1212,00

1396,00

1254,00

3862,00

128,73

RICA UNITO (ALTA TENSIONE E MEDIA TENSIONE)

					ENERGIA	ATTIVA 201	L4	
F	1	F2	SUPERFICE	TOTALE F	1 TOTALE F2	TOTALE F3	ΤΟΤΑ	LE ANNO
840	08,00 2204,00 8780,450621 346847		346847	131589	210352	688788		
553	2,00	1068,00	9873,388977	191800	111183	117451	420434	
489	9,00	2350,00	7440,591059	169942	56040	96188	32	22170
2472	22,00	14053,00	9873,388977	108862	39485	40634	18	8981
131	6,00	397,00	0	104186	41660	48886	19	4732
1761	7,00	9454,00	0	50970	27598	48755	127323	
145						ΤΟΤΑ	LE CO	1748
156	SEDE							9992
25					POD	TENSI	ONE	4695
32		TORINO, O	CORSO SVIZZERA 1	185	IT020E0018942	6 380 V	olt	108
78		TORINO,	PIAZZA BERNINI 1	2	IT020E0016820	2 380 V	olt	/512
242	TOR	INO, CORS	O MASSIMO D'AZE	EGLIO 42	IT020E0031153	3 380 V	olt	.361
195	то	RINO, VIA	MASSIMO MONT	ANO 1	IT020E0016820	5 380 V	olt	1489,17
113	TORI	NO, CORS	D MASSIMO D'AZE	GLIO 15	IT020E0006686	5 380 V	olt	08,80
153	т	DRINO, CO	RSO REGIO PARCO	0 142	IT020E0055514	8 380 V	olt	1188,90
869	TORINO, VIA GABRIELE CHIABRERA 37		ERA 37	IT020E00327838 380 Vo		olt	78,00	
7964	TORINO, VIA VERDI 25			IT020E0004710	9 380 V	380 Volt		
162	TORINO, VIA BAVA 31			IT020E0063595	1 380 V	olt	27,80	
	TORINO, VIA CESARE BENEVELLO 3		LLO 3	IT020E0004710	8 380 V	olt	10,57	
		TORINO, V	IA SANT'OTTAVIO) 19	IT020E0030917	7 380 V	olt	120,75
	TORINO, VIA SANT'OTTAVIO 50		50	IT020E0030551	7 380 V	olt		

RICA UNITO (ALTA TENSIONE E MEDIA TENSIONE)

						ENE	RGIA		/A 201	L4		
F	1	F2	SUPERFIC	E	TOTAL	E F1	ΤΟΤΑΙ	.E F2	ΤΟΤΑ	LE F3	ΤΟΤΑ	LE ANNO
840	8408,00 2204,00 8780,45062		346847		1315	89	210	352	68	8788		
553	2,00	1068,00	9873,38897	77 191800		1111	.83	117	451	42	20434	
489	9,00	2350,00	7440,59105	i9	9 169942		560	40	961	.88	32	22170
2472	22,00	14053,00	9873,38897	7	1088	62	39485 40		406	i34	18	8981
131	6,00	397,00	0		1041	86	416	60	488	86	19	4732
1761	17,00	9454,00	0		5097	0	275	98	487	755	127323	
145	0,00	425,00	2467,34601	.3	5252	3	478	27	513	98	151748	
156	566,00 1576,00 5556,67750)2	2 38645		348	34865 364		82	10	9992	
259	259,00 207,00 25		2581,82051	2581,820518		74959		13467 162		69	10	4695
327	327,00 329,00i 5556,67750		42929		9	117	10	194	69	7	4108	
780,00 560,00		560,00	1326,31508	1326,315086		1	157	87	223	34	5	7512
2423	33,00	10797,00	1148,69008	39	1726	0	141	27	199	74	5	1361
1951	17,00	8159,00	11271,00	20	955,00	108	301,00	129	19,00	446	75,00	1489,17
1139	94,00	4656,00	4728,00	11	157,00	32	22,00	58	5,00	206	4,00	68,80
1535	52,00	5491,00	8980,00	15	308,00	84	65,00	118	94,00	356	67,00	1188,90
8698	34,00	57495,00	98963,00	12	272,00	37	70,00	69	8,00	234	0,00	78,00
79645,00		36221,00	60250,00	39	913,00	38	95,00 393		5,00	117	43,00	391,43
1620,00		421,00	614,00	2	255,00 19		90,00	00 389		83	4,00	27,80
			CESARE BEN	7	53,00	75	60,00	75	8,00	226	51,00	75,37
	TORINO, VIA			13	396,00	12	12,00	125	4,00	386	52,00	128,73
	TORINO, VIA SANT		IA SANT'OTTA			1	020E00	30551	7	380 V	olt	

RICA UNITO (ALTA TENSIONE E MEDIA TENSIONE) **ENERGIA ATTIVA 2014** SUPERFICE TOTALE F1 TOTALE F2 TOTALE F3 TOTALE ANNO F2 F1 2204,00 8780,450621 346847 131589 210352 688788 8408,00 9873,388977 420434 191800 111183 117451 5532,00 1068,00 4899,00 2350,00 7440,591059 169942 56040 96188 322170 24722,00 14053,00 9873,388977 108862 39485 40634 188981 1316,00 397,00 0 104186 41660 48886 194732 17617.00 9454,00 50970 127323 0 27598 48755 1450,00 425,00 2467,346013 47827 151748 52523 51398 1566,00 1576,00 5556,677502 38645 34865 36482 109992 259,00 207,00 2581,820518 74959 13467 16269 104695 327,00 329,00 5556,677502 42929 11710 19469 74108 22334 57512 560,00 1326,315086 19391 15787 780,00 1148,690089 17260 14127 19974 51361 24233,00 10797,00 20955,00 10801,00 12919,00 44675,00 1489,17 19517,00 8159,00 11271,00 1157,00 322,00 585,00 2064,00 68,80 11394,00 4656,00 4728,00 15308,00 8465.00 11894.00 1188,90 35667.00 8980,00 15352,00 5491,00 1272,00 370,00 698,00 2340,00 78,00 98963,00 86984,00 57495,00 3913,00 3895,00 3935,00 11743,00 391,43 79645,00 36221,00 60250,00 255,00 190,00 389.00 834.00 27,80 1620,00 421,00 614,00 753,00 750,00 758,00 2261,00 75,37 TORINO, VIA CESARE BEN 128,73 1396.00 1212.00 1254.00 3862.00 TORINO, VIA SANT'OTT TORINO, VIA SANT'OTTAVIO 50 IT020E00305517 380 Volt

Re@Unito: Unito at a glance

Re@Unito: Unito at a glance

UNITO's building stock

Period of construction

2014

- Rettorato (1713)
- Palazzo Campana (1675)
- Physics Department (end of XIXth)
- Palazzo Nuovo (1966)
- Grugliasco (1999)
- Campus Luigi Einaudi (2012)

Functions

- <u>Administrative Offices (EX:</u> Palazzo degli Stemmi)
- <u>Humanities Departments (</u> EX: Palazzo Nuovo) close at 8:00 PM
- Hospitals: (EX: Molinette)
- <u>Science Departments:</u> (EX: Biotech, Physics, Chemistry) host several laboratories working 24h/24h
- Botanical Garden, Museum, libraries, ...

1st javascript prototype

Development of js script to analyse single building energy consumption ...

1st javascript prototypes

. and to compare different years and building consumption

2015

Centro Sperimentale di Carmagnola Annual Historical Trend

2014 Total Annual Consumption

2015

Ok, well.

Now, it's easier to write energy reports and to identify the most inefficient buildings

OpenData, thesis and energy audit 2015 Need OpenData 10 engage users of

directly / the each building

a «common» to improve sustainability

eed to spend a lot of time to identify energy wasting

Student's projects

(bachelor and master) to conduct energy audits

UniToGO: Unito Green Office

Date of birth: 05/2016 UniToGO ÍS an interdisciplinary network within the University of Turin, rganised in 5 Working Groups formed by academic and technical staff as well as students.

UniToGo coordinates and promotes all activities and initiatives about sustainability.

2016

UniToGO elaborates an "Environmental Sustainability Action Plan"

The structure of the Unito Green Office

UniToGO: action plan

1st **aim of each Group Define an action plan**

Necessity of proper energy efficiency indices Necessity of a proper approach to monitor historical trends

A methodology for the energy performance classification of residential building stock on an urban scale, Giuliano Dall'O'

Energy Efficiency indices: general considerations

The most general definition of an **Energy Efficiency Index*** is:

$$EEI = \frac{E}{\Lambda}$$

where E =«Energy Consumption» and $\Lambda =$ «Factor related to the Energy Consumption»

. The factor E can be related to:

- X. <u>The Electrical Consumption</u> **E**_{kwh} (Kwh);
- B. <u>The Gas Consumption</u> **E**_{gas} (m³ of gas);
- 2. / The factor Λ can be related to:
 - 1. <u>The Surface of the building</u> Λ_{m2} (m²);
 - 2. <u>The number of Users</u> (#users);
 - 3. <u>The Degree Days</u> (Degree Days). DDx refers to different approaches;
 - 4. Any other factors.

* Energy efficiency index as an indicator for measuring building energy performance: A review, 2015, Nur Najihah Abu Bakar

Energy Efficiency indices: degree-day method

The degree-day method relates the energy consumption with the average outdoor temperature and/or humidity. It can be used to compare the performance in different years, e.g.

2016

$$EEI_{year, Kwh, DDx} = \sum_{i=6}^{9} \frac{E_{i Kwh}}{\Lambda_{i, DDx}}$$

Indeed, the heating and the ventilating systems are strongly affected by the outdoor weather conditions.

Here the main limitation is that energy consumption is not saturated by HVAC systems. In this study, two different $\Lambda_{i,DDx}$ coefficients have been adopted:

<u>Mean Temperature Index</u>: $\Lambda_{i,DDmax} = \sum_{j=1}^{30} (T_{j,av} - T_{Comfort})$ where $T_{j,av} =$ «Daily average temperature» and $T_{Comfort} = 24^{\circ}C$;

Humidex Index^{*}: $\Lambda_{i,\text{DDHumidex}} = \sum_{j=1}^{30} T_{j,av} + \frac{5}{9} \left(6.11 * \frac{HU_{j\%}}{100} * 10^{\frac{7,5*Tj_{av}}{237,7+Tj_{av}}} - 10 \right)$ where $HU_{j,\%} = \text{(Daily Average Relative Humidity)};$

August

Rank	Building	Value
1	Biotecnologie	16.95 KWh/m2
2	Dipartimento Di Fisica	13.17 KWh/m2
3	Orto Botanico	12.73 KWh/m2
4	Ex Edilscuola	8.84 KWh/m2
5	Lingotto	8.31 KWh/m2
6	Campus Luigi Einaudi	8.24 KWh/m2
7	Palazzo degli Stemmi	6.84 KWh/m2
8	Dipartimento di Economia	6.40 KWh/m2
9	Dipartimento Di Informatica	6.39 KWh/m2
10	Ospedale San Luigi	6.01 KWh/m2

Rank	Building	Value
9	Dipartimento Di Informatica	6.51 KWh/m2
10	Campus Luigi Einaudi	6.45 KWh/m2
16	Centro Sperimentale di Carmagnola	4.94 KWh/m2
17	Ospedale San Luigi	4.72 KWh/m2
18	Dip. di Scienze Sociali	4.69 KWh/m2

January

2016

Different month ↓

Different ranking

KWh / m²

Rank	Building	Value
1	Biotecnologie	19.4 KWh/m2
2	Dipartimento Di Fisica	14.72 KWh/m2
3	Orto Botanico	13.6 KWh/m2
4	Lingotto	11.45 KWh/m2
5	Campus Luigi Einaudi	11.03 KWh/m2
6	Dipartimento di Economia	10.4 KWh/m2
7	Ex Edilscuola	9.24 KWh/m2
8	Palazzo degli Stemmi	8 KWh/m2
9	Dipartimento Di Informatica	7.9 KWh/m2
10	Dipartimento di Chimica e Farmacia	7.8 KWh/m2

Building Value Rank Dipartimento Di Fisica 217.6 KWh/Users 3 Dipartimento di Chimica e Farmacia 183.43 KWh/Users 156.06 KWh/Users 5 Farmacologia 47.35 KWh/Users Dipartimento Di Informatica 13 Campus Luigi Einaudi 14 44.56 KWh/Users 15 Ospedale San Luigi 30.46 KWh/Users

KWh / users

2016

Different *A*, coefficient ↓ Different

ranking

Kwh_{night} / Kwh_{day}

2016

Rank	Building	Value
43	Torino Esposizioni	0.6808 KWh_night/KWh_day
44	Campus Luigi Einaudi	0.6754 KWh_night/KWh_day
45	Dipartimento Di Informatica2	0.64 KWh_night/KWh_day

A completely different ranking

2016

Maybe, we need some analysis tools...

* The Database of actual Energy Consumption as a tool to analyze and plan energy retrofit actions in large building stocks, Federica Ariaudo * True Green and Sustainable University Campuses?

2016

Toward a Clusters Approach, 2016, Giulia Sonetti

Humanities Buildings

Palazzo Nuovo

- Palazzo Badini Confalonieri
- Dip. di Scienze Sociali
- Palazzo Lionello Venturi 2
- Dipartimento Letteratura Moderna Comparata 2
- Palazzo Gorresio-Ex Vetrerie Berruto
- Palazzo Lionello Venturi
- Dip. di Scienze Giuridiche
- Dipartimento Letteratura Moderna Comparata
- Ex Istituto Galvani

- **MEDIUM** consumption at night
- LOW consumption per m²

Scientific Buildings (with lab)

Farmacologia

- Biotecnologie
- Ex Edilscuola
- Dipartimento di Medicina
- Dipartimento Di Informatica2
- Dipartimento Di Fisica Old
- Dipartimento di Chimica e Farmacia
- Dipartimento Di Informatica
- Dipartimento Di Fisica

- 1. MEDIUM consumption at night
- 2. MEDIUM consumption per m²

Scientific Buildings (without lab)

Dipartimento di Scienze della Terra – Gal

Palazzo Campana

- Dipartimento di Economia 2
- A Torino Esposizioni
- Dipartimento di Economia
- Torino Esposizioni old
- Ex Alfieri Carru Ex Caserma Podgora 2
- Ex Alfieri Carru Ex Caserma Podgora

- 1. LOW consumption at night
- 2. LOW consumption per m²

All Unito's building stock

Too messy?

Monitoring historical trends: annual consumption per square meters

Monitoring historical trends: annual consumption per square meters

2016

Dal 1º al 61º 🔇

Towards a well-design platform

All the analyses presented are based on monthly electrical bills which can be quickly recovered through an online open source platform. We observe that in order for EEI to be helpful in the energy management of a large building stock

2017 -

2018

There are some general simple tips and suggestions which must be pointed out as results of this work in order to use EEIs.

- 1. A precise definition of «edges» and «thresholds» for different types of buildings is necessary
- 2. One needs to know precisely the functions and the main electrical loads for any building
- 3. Different approaches (i.e. scatter method and multi dimension analysis) can be used to define clusters of building

THANK YOU FOR YOUR ATTENTION

www.green.unito.it

University of Turin Dario Cottafava Dario.cottafava@gmail.com

Thanks to Prof. P. Gambino - Prof. M. Baricco - Eng. A. Tartaglino